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Abstract—We study the optimal power control, rate adapta-
tion and scheduling for energy minimization subject to delay,
traffic demand, transmit power and SNIR constraints in Ultra-
Wideband wireless networks. We first show that power control
is not required for delay constrained energy minimization. We
then formulate optimal scheduling problem as an exponential
size Linear Programming (LP) problem for which we propose
the Pricing Minimization based Column Generation Method (PM-
CGM). PM-CGM decomposes the exponential size LP problem into
two sub-problems Restricted Master Problem (RMP) and Pricing
Problem (PP) and solves it iteratively. We solve the corresponding
delay minimization problem for the initialization of the RMP and
propose a pricing minimization based polynomial time algorithm to
solve the non-linear integer PP formulation. Simulations illustrate
that PM-CGM algorithm decreases the runtime required to solve
the large scale LP problem considerably while performing very
close-to-optimal for different network scenarios.

Index Terms—Scheduling, energy minimization, delay minimiza-
tion, power control, rate adaptation, UWB.

I. INTRODUCTION

Ultra-wideband (UWB) is a radio technology used for trans-
mission of data spread over a bandwidth more than either
500MHz or 20% of the center frequency. This ultra wide
bandwidth achieves robust communication at very low energy
level and high data rate since it resists to multi-path fading,
interference and decreases the power loss due to the lack of
line-of-sight in very harsh environments.

The scheduling algorithms designed for UWB wireless net-
works mostly aim at maximizing throughput along with consid-
ering fairness among the wireless nodes since they usually con-
sider multimedia applications requiring high-rate data transfer
[1], [2], [3], [4]. However, the objective of maximizing through-
put cannot be considered to be applicable for time-critical UWB
applications where the objective is delay constrained energy
minimization given the data traffic, transmit power and SNIR
requirements on the links.

Scheduling for delay constrained systems have been investi-
gated for interference-free and interference-controlling commu-
nication schemes. For interference-free scheduling, the studies
aim at minimizing energy consumption by determining the
optimal packet transmission times and durations where all
packets have a common deadline [5], [6] or individual deadlines
[7], [8]. The main finding of these studies which is minimization
of energy consumption by transmitting the packets in longest
possible duration however is not applicable to short range
transmissions since the energy consumption due to circuitry
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during data transmission dominates the energy consumption
due to actual data transmission which is shown to be valid for
UWB transmissions in [9]. On the other hand, the scheduling
algorithms designed for interference-controlling communication
schemes aim at determining the best assignment of simultaneous
transmissions considering optimal power allocation [10], [11],
but not exploiting the rate adaptation for energy minimization.
Delay constrained energy minimization has been investigated in
a joint framework of optimizing transmission rates, powers and
scheduling only for narrowband long-range wireless networks
[12].

Determining the best assignment of simultaneous transmis-
sions for optimal scheduling for delay constrained energy mini-
mization necessitates solving very large scale problems since the
number of possible concurrently active link sets is exponential
in the number of links. Such a large scale problem can be
solved using Column Generation Method (CGM) [13] which
decomposes it into master and pricing sub-problems and solves
rapidly in an iterative scheme. In the context of scheduling in
wireless networks, CGM has been investigated for throughput
maximization in [14], [15] and delay minimization in [16] where
the authors have not considered rate adaptation. In [17], we
have extended the delay minimization formulation presented in
[16] to solve the minimum-length scheduling problem in UWB
wireless networks considering the adaptability of transmission
rate of a link to the SNIR level achieved at the receiver to meet
certain bit/packet error rate requirement.

The aim of this study is to determine the optimal power con-
trol, rate adaptation and scheduling for the objective of minimiz-
ing energy subject to delay, data traffic, reliability and transmit
power constraints on the links in UWB wireless networks. The
main contributions are as follows. First, we determine optimal
power and rate allocation for energy minimization with delay
constraint in UWB wireless networks. Second, we formulate
the delay constrained energy minimization problem as a very
large scale Linear Programming (LP) problem with exponential
number of variables in the number of the links. Third, we
propose PM-CGM scheduling algorithm that decomposes the
exponential size LP problem into two sub-problems called
Restricted Master Problem (RMP) and Pricing Problem (PP).
Fourth, we exploit the corresponding delay minimization prob-
lem to find an initial delay-feasible schedule for initialization of
RMP and propose a heuristic method replacing the intractable
optimal PP formulation. Simulations illustrate that PM-CGM
decreases the runtime considerably with respect to the optimal
LP formulation while achieving very close to optimal solutions.
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II. JOINT SCHEDULING, POWER AND RATE ALLOCATION
PROBLEM FOR ENERGY MINIMIZATION

The optimal power control, rate adaptation and scheduling
problem for energy minimization in UWB wireless networks
subject to total delay, link traffic demand, transmit power and
SNIR constraints is formulated as follows:
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where N is the number of time slots, L is the number of
links, Dmax is the maximum delay requirement; i.e., maximum
schedule length, Rl is the data requirement of link l, pmax is the
maximum transmit power due to UWB regulations, ptx and prx
are the constant powers dissipated at the transmitter and receiver
respectively during data transmission in active mode, K is a
constant representing the linear mapping between SNIR level
at the receiver and the achievable transmission rate, N0 is the
background noise, hkl is the power gain from the transmitter of
link k to the receiver of link l, γ is a UWB parameter depending
on the pulse repetition time and shape, βl is the SNIR threshold
value for link l depending on the desired bit/packet error rate and
modulation schemes, and alk is a constant with value 1 if two
links l and k share a common wireless node and 0 otherwise.
The variables are p(n)l , the transmission power of link l in time
slot n; x(n)l , the transmission rate of link l in time slot n and
t(n), the length of time slot n.

The objective of the optimization problem is to minimize the
total energy consumption in the network. Equation (2) states the
maximum delay constraint for the schedule to be constructed.
Equations (3) and (4) represent the traffic demand and maxi-
mum transmission power constraints of the links respectively.
Equation (5) is the achievable rate formulation for the links
based on the rate adaptivity characteristic of UWB such that
the transmitter of a link can adapt its transmission rate linearly
to the SNIR level achieved at the receiver due to very large
bandwidth. Equation (6) states that a particular node in the
network can be either the transmitter or receiver end of, at most,
one active link in a time slot.

Since it is hard to solve this general non-convex programming
problem in this joint optimization framework, it is beneficial to
solve optimally for each set of variables independently.

III. OPTIMAL RATE AND POWER ALLOCATION

For a fixed power allocation, using maximum achievable
rate satisfying Equation (5) is optimal since increasing the
transmission rate decreases the time duration required for the
transmission of a fixed amount of data, which consequently de-
creases both the delay and energy consumption of a link. More
important issue for the foregoing joint optimization problem is
optimal power allocation since power allocation of a specific
link interests all other links by means of interference it creates.

It is shown in [1] that any feasible rate allocation or average
power consumption can be achieved with 0/pmax allocation.
However, it is not obvious that the 0/pmax allocation is the
optimum choice in delay constrained energy minimization prob-
lem. Suppose that we have achieved a schedule for minimizing
energy while satisfying the delay constraint with an arbitrary
power allocation. According to [1], it is possible to achieve
the same delay with a new schedule in which the power
allocation is limited to 0/pmax allocation. It is also possible
to achieve the same energy consumption with a new schedule
in which the power allocation is limited to 0/pmax allocation.
However, schedules constructed with 0/pmax allocation for the
aforementioned purposes are not necessarily the same, i.e.,
while we are constructing a new schedule based on 0/pmax
power allocation in order to achieve the same delay, energy
consumption may increase and vice versa. For this reason, we
state the optimality of power allocation for delay constrained
energy minimization.

Theorem 1: In the optimal solution for the delay constrained
energy minimization problem described in Section II, each link
is either active with maximum transmission power or inactive
in a time slot.

Proof: Suppose that an arbitrary schedule satisfying the con-
straints in the delay constrained energy minimization problem
is constructed for a network. Let a be the duration of a time
slot in which links {1, 2, ..,m} are active with corresponding
power and rate allocations {p1, p2, .., pm} and {x1, x2, .., xm}
respectively. Let fk denote the number of data bits transmitted
by link k ∈ [1,m] in this time slot. Let E be the total energy
consumption in this time slot. We will show that we can separate
this time slot into two time slots such that when any link with
an arbitrary power level is assigned to transmit power pmax
and 0 in the first and second slot respectively while keeping
the transmit power of the remaining links the same, the time
duration of the first and second time slots denoted by a(1) and
a(2) respectively required for the transmission of total fk data
bits by every link l ∈ [1,m] results in total delay less than a,
i.e. a(1) + a(2) 6 a, and energy consumption less than E.

First, we will show that a(1) + a(2) 6 a. Assume that in
the first time slot the transmit power pi of an arbitrary link i
is assigned to pmax while keeping the transmit powers of the
remaining links the same. The data rate of link i is x(1)i =
(pmax/pi)xi whereas the data rate of link j where j 6= i is
given by

x
(1)
j =

N0 + Uj + piC

N0 + Uj + pmaxC
xj (7)
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where Uj denotes the interference of the links except link i on
link j and C = hijγ. Here, it is obvious that only link i satisfies
its data requirement in the first time slot since x(1)i ≥ xi and
x
(1)
j ≤ xj where j 6= i therefore a(1) = (pi/pmax) a. In order

to satisfy the data requirements of the links other than link i,
these links are allocated in the second time slot. The data rate
of link j where j 6= i in the second time slot is given by

x
(2)
j =

N0 + Uj + piC

N0 + Uj
xj (8)

For an arbitrary link j to satisfy its data requirement, the
equation given as

axj = a(1)x
(1)
j + a

(2)
j x

(2)
j (9)

should be satisfied where a(2)j denotes the actual amount of time
required for link j to meet its data requirement. Substituting a(1)

with (pi/pmax) a, a(2)j is given by

a
(2)
j = a{ N0 + Uj

N0 + Uj + piC
− pi
pmax

N0 + Uj

N0 + Uj + pmaxC
} (10)

Since we want all the links to satisfy their data requirements,
a(2) = maxj∈[1,m],j 6=i a

(2)
j . Suppose that this maximum is

achieved for link k. Then, the total length of a(1) and a(2),
say a

′
, is given by

a
′
= a{1− piC

N0 + Uk + piC
+

piC

N0 + Uk + pmaxC
} (11)

It is clear that a
′ ≤ a for every pair i,k and equality holds

only if pi = pmax. We can conclude that any link with an
arbitrary power level can be allocated with 0/ pmax transmit
power allocation resulting in a new schedule with less delay.

Now, we will investigate the energy consumption. Energy
consumption in time slot of duration a is given by

E = a

m∑
j=1

{pj + ptx + prx} (12)

Let E(1) and E(2) denote the energy consumption in the first
and second time slots respectively. E(1) and E(2) are formulated
as follows:

E(1) = a(1)
m∑

j=1

{pj + ptx + prx}+ a(1){pmax − pi} (13)

E(2) = a(2)
m∑

j=1

{pj + ptx + prx} − a(2)pi (14)

The total energy consumption, say E
′
, is then given by

E
′
= a

′
m∑

j=1

{pj + ptx + prx}+ a(1)pmax − {a(1) + a(2)}pi (15)

Substituting pmax with pia/a(1), we get

E
′
= a

′
m∑

j=1,j 6=i

{pj + ptx + prx}+ api + a
′
{ptx + prx} (16)

Since a
′ ≤ a, it follows that E

′ ≤ E and equality holds only

if pi = pmax. �

IV. OPTIMAL SCHEDULING

Given the optimal rate and power allocation provided in
Section III, the joint optimization problem presented in Section
II can be reduced to a pure scheduling problem. However, since
we do not know the sets of concurrently transmitting links prior
to scheduling, we need to consider all possible subsets of links
for concurrent transmission as described next.

Let E = {Ek : 1 ≤ k ≤ |E|} denote the set of all feasible
subsets of the link set L = {1, 2, ..., L}. Note that |E| is equal
to 2L if any two links do not share a common node. Let X be
an L × |E| transmission rate matrix, where the element xlk of
X is the optimal transmission rate of link l in link set Ek given
as

xlk =
pmaxhll

βl

N0 +
∑

i∈{Ek/l}

pmaxhilTfγ

−1

(17)

Notice that each column of the matrix X gives the optimal
transmission rates of the concurrently active links in a subset.
Furthermore, let e denote a 1× |E| vector whose k-th element
is equal to the number of active links in link set Ek.

Then, optimal scheduling problem for energy minimization
with delay constraint can be formulated as a Linear Program-
ming (LP) problem as:

minimize
(pmax + ptx + prx)et (18)

subject to
Xt ≥ R (19)

−1t ≥ −Dmax (20)

where 1 is a 1 × |E| all-ones vector and R is a L × 1 vector
containing the traffic demand requirements of the links, i.e. R =
[R1, R2, ..., RL]. The variable of the problem is |E| × 1 vector
t whose k-th element is the time slot duration allocated for the
subset Ek. Equations (19) and (20) represent the traffic demand
requirements of the links and delay requirement of the schedule
respectively.

There are two difficulties in solving this optimization problem
although it is an LP problem. An exponential time effort is
required to form X matrix and solve the corresponding LP
since the number of link subsets so the number of variables
is exponential in the number of links. These difficulties can be
overcome by reducing the size of E thus dealing with a small
size rate matrix X.

V. PRICE MINIMIZATION BASED COLUMN GENERATION
METHOD (PM-CGM)

The intractability of the exponential size LP formulation
given in Section IV can be overcome by using Column Gen-
eration Method (CGM). In CGM, the large scale original
LP problem is decomposed into a Restricted Master Problem
(RMP) and a Pricing Problem (PP) and the original problem
can be solved in an iterative way. We start with an initial
feasible RMP which is a restricted; i.e., small-scale, version
of the exponential LP formulation. Then, we pass the dual
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solution of RMP to PP. If the optimal solution of the PP can
be used to improve the solution of the RMP, we pass the vector
corresponding to the optimal solution to RMP by adding it to
the constraint matrix of RMP as a column. Then RMP is solved
again and its dual is passed to PP to make PP generate another
column. This iterative behaviour continues until the optimal
solution of the PP cannot be used to improve the solution of the
RMP. This column generation idea is the center of PM-CGM
algorithm.

A. Restricted Master Problem (RMP)

We reduce the original problem to the following restricted
problem given as

minimize
est (21)

subject to
Xst ≥ R (22)

−1t ≥ −Dmax (23)

The difference between the original problem and the fore-
going restricted problem is that only a subset of Es ⊂ E is
considered in the restricted problem and Xs and es denote the
transmission rate matrix and the vector of numbers of active
links corresponding to the subset Es respectively. Note that we
have removed the constant multiplier (pmax + ptx + prx) in
the objective since it does not affect the optimal solution. For
the first iteration of PM-CGM, we need an initial transmission
rate matrix Xs that guarantees a feasible solution for the
RMP; i.e, both data requirements of the links and total delay
requirement for the schedule can be satisfied. However, this is
not a straightforward problem. For now, we assume that such
an initial matrix is available. We will discuss this in Section
V-C.

RMP can be solved using simplex method in polynomial time
and primal optimal solution tp and dual optimal solution td

corresponding to the dual of RMP can be obtained. Note that
tp may not be the optimal solution of the original problem; i.e.,
tp is the optimal solution only when Es contains the optimal
sets. The reduced cost of a column in the original constraint
matrix of the problem given by Equations (18-20) but not in the
restricted constraint matrix of the problem given by Equations
(21-23) is

ck = ek − (

L∑
i=1

tdi xik) + tdL+1 (24)

where tdl is the l-th element of the optimal dual solution of
the RMP. Negativity of the reduced cost of any column in
the original constraint matrix implies that the optimal solution
of the RMP can be improved; i.e. decreased, by adding
the column with the negative reduced cost to the restricted
constraint matrix. If there is not a column with negative reduced
cost, the solution tp of the RMP is the optimal solution to the
original large scale problem. In order to find if there is such a
column, one needs to solve the pricing problem discussed next.

B. Pricing Problem (PP)

Pricing Problem that is used to generate a column with the
minimum reduced cost is formulated as

minimize
L∑

l=1

bl −
L∑

l=1

tdlK
blpmaxhll

βl
(
N0 +

∑L
k=1,k 6=l bkpmaxhklγ

) + tdL+1 (25)

subject to

alk + bl + bk ≤ 2, l, k ∈ [1, L] (26)

bl ∈ {0, 1} , l ∈ [1, L] (27)

The variables of the optimization problem are bl for each link
l, which acts as an indicator for activity of link l; i.e., takes
value 1 if link l is active and 0 otherwise.

PP minimizes the reduced cost given by Equation (24)
over all columns x(k) of the original transmission rate matrix
X subject to Equation (26) representing the availability of
concurrent transmissions originally given in Equation (6) using
integer variables bl. After determining bl for each link l,
x(k) is the column vector of maximum achievable rates given
by Equation (5) with the assigned power allocation blpmax,
i.e. xl = K blpmaxhll

βl(N0+
∑L

k=1,k 6=l bkpmaxhklγ)
. Note that, one must

append a (-1) to the column x(k) before passing to the RMP to
completely characterize a column in the constraint matrix due
to the delay constraint represented by Equation (23). Moreover,
cost coefficient of the variable corresponding to the vector
passed to the RMP is

∑L
l=1 bl.

The foregoing PP formulation is a non-linear integer pro-
gramming problem which is NP-hard and cannot be solved in
polynomial time. In order to deal with this complexity problem,
we propose Price Minimization Algorithm (PMA) to solve PP
fast and efficiently. We define the price PS for a set S of links
as

PS = |S| −
∑
l∈S

tdlK
pmaxhll

βl
(
N0 +

∑
k 6=l,k∈S pmaxhklγ

) + tdL+1 (28)

Price Minimization Algorithm (PMA)

1: S = ∅; S ′ = L;
2: while S 6= L do
3: if mini∈S′ PS+{i} < PS then
4: k=argmini∈S′ PS+{i};
5: S = S + {k};
6: S ′ = S ′ − {k};
7: else
8: break;

In each iteration, PMA algorithm picks one link to add to
set S such that this link minimizes the price of the set after
it is added to the set (Lines 4-5). The algorithm terminates
either when the set S includes all the links in the link set L
(Line 2) or the price of the set S cannot further decrease by
the addition of a link (Line 3). If the price of the output set S
returned by the PMA is less than 0, the vector of transmission
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rates corresponding to set S , with a (-1) appended as the last
element, is passed to the RMP since it decreases the objective
of the RMP; i.e., the energy consumption. Otherwise, the PM-
CGM algorithm terminates.

C. Determination of a Feasible Initial Matrix for RMP

PM-CGM algorithm requires an initial transmission rate
matrix Xs that guarantees a feasible solution for the RMP as
stated in Section V-A. In order to produce an Xs matrix that
satisfies both data and delay requirements, we propose solving
the delay minimization problem given as

minimize
1t (29)

subject to
Xt ≥ R (30)

Feasibility condition of the energy minimization problem
with delay constraint is equivalent to the condition that the
optimal solution of the above delay minimization problem is
less than the delay requirement Dmax. Hence, if we solve this
delay minimization problem, the columns in X corresponding
to the positive variables in the optimal solution t constitutes a
feasible initial matrix Xs if the optimal delay is less than Dmax.
However, since this is again a large scale LP programming
problem with exponential number of variables in the number
of links, it is intractable. In [17], we have proposed a col-
umn generation based fast scheduling algorithm for the delay
minimization problem with data constraints on the links. The
solution procedure is directly applicable here. Note that we can
stop at the particular iteration of the column generation that
returns a schedule with delay less than Dmax since it suffices
to create a schedule with length less than or equal to the delay
constraint Dmax.

VI. SIMULATIONS AND PERFORMANCE EVALUATION

Simulations are performed on a computer with a CPU of
2.5GHz processing speed and 4GB RAM in MATLAB. The
path loss model used is PL(d) = PL(d0)−10α log10

(
d
d0

)
+Z

where d is the distance between the transmitter and receiver,
d0 is the reference distance with value 1m, PL(d) is the path
loss at distance d, α is the path loss exponent and Z is a
Gaussian random variable with zero mean and σ2

z variance. The
simulation parameters are given in Table-I.

α 4 σ2
z 2 pmax 10mW

βl 10 dB PL(d0) 30 dB ptx 30mW
K 106 N0 10−8 W/Hz prx 100mW

TABLE I: Simulation Parameters

For a better characterization of the algorithm performance, we
have performed the simulations on 1000 independent random
network topologies for each simulation scenario. As an alterna-
tive scheduling algorithm, we use Fixed Rate Allocation algo-
rithm, denoted as FRA. In FRA algorithm, among all possible
sets of links, the feasible ones are determined based on a fixed
predetermined rate r. The fixed transmission rate r is determined

as the average of the minimum and the maximum transmission
rates for which a feasible schedule can be constructed. The
aim of using FRA algorithm for comparison is to illustrate
the superiority of rate-adaptivity of PM-CGM over fixed rate
allocation schemes.

Figure-1 illustrates the approximation ratio performance of
PM-CGM and FRA algorithms for different number of links
with 95% confidence intervals depicted around the means where
approximation ratio is the ratio of the energy consumption
achieved by the algorithm to the minimum energy consumption
obtained by solving the exponential LP (EXP-LP) formulation
given in Equations (18-20). The approximation ratio of PM-
CGM scheduling algorithm is very close to 1; i.e. optimal
solution, and outperforms FRA algorithm significantly for dif-
ferent number of links. In addition, the approximation ratio
of PM-CGM is robust to the increase in the number of the
links whereas the approximation ratio of the FRA algorithm
increases as the number of links increases. The small lengths
of the confidence interval bars also demonstrate the robustness
of PM-CGM to different topologies.

Besides performing very close to optimal, PM-CGM de-
creases the running time required to solve EXP-LP to a
greater extent as Figure-2 illustrates. The runtime of PM-CGM
increases linearly whereas the runtime of EXP-LP increases
exponentially with the number of links. The average runtime
of PM-CGM is only 1% of the average runtime of EXP-LP
for a network of 20 links. Note that the reason of performing
simulations for up to 20 links is the intractability of EXP-LP
for more than 20 links; i.e., it is not possible to solve EXP-LP
in MATLAB.

Figure-3 illustrates the robustness of the performance of PM-
CGM to varying network densities. The PM-CGM is closer to
the optimal at low and high network densities that correspond
to the cases where the links transmit all simultaneously and one
by one respectively since optimality of concurrent transmissions

10 12 14 16 18 20
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

number of links

a
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

 

 

PM−CGM 

FRA

Fig. 1: Approximation ratio of PM-CGM and FRA algorithms for
different number of links with 95% confidence intervals depicted
around the means.
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Fig. 2: Average running time comparison of PM-CGM and EXP-LP
for different number of links.

is more obvious in these cases compared to medium network
densities.
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Fig. 3: Approximation ratio of PM-CGM and FRA algorithms for
different node densities with 95% confidence intervals depicted around
the means.

VII. CONCLUSION

In this paper, we study the optimal power control, rate
adaptation and scheduling problem for delay constrained energy
minimization in UWB wireless networks subject to total delay,
link traffic demand, transmit power and SNIR requirements.
Upon stating the optimal rate and power allocation analytically;
i.e., each link is active with maximum transmit power and
corresponding maximum achievable rate or inactive at a time
at the optimal solution, we formulate the scheduling problem
as a large scale LP problem of exponential size in the number
of the links. We then propose the column generation based al-
gorithm called Pricing Minimization based Column Generation

Algorithm (PM-CGM) decomposing this exponential size LP
problem into Restricted Master Problem (RMP) and Pricing
Problem (PP) by exploiting the column generation technique
used for solving large scale problems. For the initialization of
the RMP problem, we illustrate that a feasible schedule can
be generated by running the CGM on the corresponding delay
minimization problem until delay-feasibility is satisfied. We
propose a polynomial-time algorithm to replace the intractable
PP formulation. Through simulations, we show that PM-CGM
performs very close to the optimal for various network topolo-
gies containing different number of nodes at different densities
and decreases the runtime required to solve the exponential LP
formulation considerably.
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