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Joint Optimization of Communication and
Controller Components of Wireless Networked

Control Systems
Yalcin Sadi, Sinem Coleri Ergen

Abstract—Designing communication system for wireless net-
worked control systems requires overcoming the additional chal-
lenge of maintaining a guaranteed performance for the control
system in the presence of wireless network induced imperfections
including packet error, delay, sampling and quantization errors
compared to traditional wireless sensor networks. The joint
optimization of controller and communication systems encom-
passing efficient abstractions of each system and taking into
account all wireless induced imperfections, the parameters of the
wireless communication system including the transmission power,
rate and scheduling and the parameters of the control system
including the sampling period has been studied for the objective
of minimizing the average power consumption of the network
and the MQAM modulation scheme. In this paper, we extend
the joint optimization problem for a generalized power cost
function that represents many power-related objectives including
minimization of total power consumption of the network and
minimization of maximum power consumption among the nodes
in the network and for any modulation scheme that satisfies
certain properties including MQAM and MFSK. The optimiza-
tion problem is formulated as a Mixed-Integer Programming
problem thus difficult to solve for the global optimum. However,
upon determining the optimality conditions for the optimization
variables, the problem reduces to an Integer Programming
problem for which we propose an optimal fast enumeration
algorithm. Simulations demonstrate that the proposed optimal
solution method outperforms the traditional separate design of
control and communication systems.

Index Terms—wireless communication, networked control sys-
tem, optimization, energy minimization, stability

I. INTRODUCTION

Wireless Networked Control Systems (WNCSs) are spa-
tially distributed control systems in which sensors, actuators
and controllers communicate through a wireless network [1].
Bringing many advantages such as the ease of installation and
maintenance, low complexity and cost, and large flexibility
to accommodate the modification and upgrade of the compo-
nents, deployment of wireless communication in information
transfer creates a tremendous potential in WNCSs to enhance
the performance of many large-scale distributed systems in-
cluding industrial automation [2], automated highway [3] and
smart grid [4]. The application of wireless communication in
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the control applications and the studies on WNCSs have been
actively supported by the leading industrial organizations [5],
[6], [7].

Designing a WNCS is a very challenging task since control
systems often have strict timing and reliability requirements
which are generally hard to satisfy by wireless sensor networks
due to the wireless communication induced imperfections such
as non-zero packet error probability, non-zero delay and sam-
pling and quantization errors. On the other hand, improving
the performance of the control system requires decreasing
the packet error probability, delay and sampling period which
increases the energy consumption in the communication. This
trade-off between the communication and controller system
performances reveals the need for techniques for quantification
of the joint performance of these systems in terms of the
wireless communication parameters including the transmission
power, rate and scheduling of the network nodes and the
control parameters including the sampling period.

The studies on the communication system design for Net-
worked Control Systems (NCS) have remained very limited
due to the lack of efficient abstractions of the control and
communication systems in a joint manner. This led to either
simplistic problem formulations by exclusion of some of the
main control and communication system parameters or numer-
ical solutions for specific scenarios avoiding the widespread
use of the techniques. While some studies [8], [9] focus on
the scheduling optimization considering sampling period and
delay requirements of the sensor nodes, some studies [10]
focus on the sampling period and delay optimization with
the objective of minimizing the overall performance loss. The
solutions proposed in these works however are not applicable
to WNCS since they assume zero packet error probability.
Communication system design for WNCS is studied in [5],
[6], [11] to achieve low end-to-end delay and control jitter in
very large mesh networks. In [12], the energy consumption
of the network is minimized considering the packet loss
probability and delay distribution. The study in [13] maximizes
the control system performance subject to the wireless link
capacity constraints and delay requirement of the control
system. However, none of these studies consider optimization
of the key parameters of the wireless communication system
including the transmission power and rate of the nodes.

The joint optimization of controller and communication
systems taking into account all the wireless induced imperfec-
tions and the parameters of both the wireless communication
system and the control system has been studied in [14]
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Fig. 1: Overview of the WNCS architecture.

with the objective of minimizing the power consumption of
the communication system guaranteeing the performance and
stability of the control system and the schedulability in the
communication system for MQAM modulation scheme. In
this paper, our goal is to extend this study by generalizing
the optimization problem for a wide range of objectives and
modulation schemes satisfying certain properties and propose
a general solution method that can be applicable for the studied
generalized optimization problem. The original contributions
of the paper are listed as follows:
• We provide a generalized optimization framework with a

generalized power cost function as the objective for the
joint optimization of controller and communication sys-
tems encompassing efficient abstractions of both systems.

• We propose an optimal solution method for the gener-
alized optimization problem that can be applicable to a
wide range of control system applications since we do not
consider any specific objective or modulation scheme in
the optimization problem.

The rest of the paper is organized as follows. Section II
describes the control and communication system models and
the assumptions used throughout the paper. The generalized
joint optimization of controller and communication systems
has been formulated and an optimal solution method has been
proposed in Section III. Simulations are presented in Section
IV. Finally concluding remarks are given in Section V.

II. SYSTEM MODEL AND ASSUMPTIONS

The system model and assumptions are detailed as follows.
1) The system architecture for a WNCS is illustrated in

Fig. 1. Multiple plants in the network where each plant
has an attached sensor node are controlled through
wireless communication. Each sensor samples the output
of its associated plant periodically and forwards the
samples to the corresponding controller of that par-
ticular plant. Since this is performed through wireless
communication, wireless induced imperfections such as
delays and packet errors naturally arise. Upon reception
of the sampled measurements, the controller computes
a control command to be forwarded to the actuator
attached to the plant. One controller is assigned as the
coordinator.

2) Information transfer beween a plant and its associated
controller is depicted in Fig. 2. The sampling period of
a node i, the transmission delay of the packet containing
the samples of node i and the packet error probability
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Fig. 2: Timing diagram between a plant and a controller
communicating over a wireless network.

are denoted by hi, di, and pi respectively. In order to
maintain the arrival order of the packets to the controller
correct, we assume that transmission delay of the packet
must not exceed the sampling period of the node; i.e.
di ≤ hi.

3) The packet error model is assumed to be a Bernoulli
random process with probability pi for node i for
simplification.

4) Time Division Multiple Access (TDMA) is considered
as MAC protocol since it provides both delay guarantee
and energy efficiency for the networks with prede-
termined topology and data generation patterns [15].
TDMA is commonly used in industrial control appli-
cations [5], [6] having these characteristics.

5) The time is divided into scheduling frames of fixed
lengths each of which is further partitioned into a bea-
con and variable number of variable-length time slots.
Coordinator controller uses the beacon to maintain the
synchronization among the elements of the network and
to inform the network about the scheduling decisions
including the transmission power, rate and sampling
period of each sensor node.

6) We consider only the power consumption in the trans-
mission of the packets since it is much larger than those
in the sleep and transient modes [16].

7) The performance and stability conditions for the control
systems have been formulated in the form of Maximum
Allowable Transfer Interval (MATI) and Maximum Al-
lowable Delay (MAD) constraints. MATI is defined as
the maximum allowed time interval between subsequent
state vector reports from the sensor nodes to the con-
troller. MAD is defined as the maximum allowed packet
delay for the transmission from the sensor node to the
controller, in [17], [18]. Although it is possible to meet
such strict real-time constraints in wireline networks,
it is naturally infeasible in wireless networks due to
non-zero packet error probability induced by wireless
communication. To overcome this infeasibility problem,
in many control applications such as wireless indus-
trial automation [5], air transportation systems [19] and
autonomous vehicular systems [20], MATI constraint
has been replaced by stochastic MATI constraint which
is keeping the time interval between subsequent state
vector reports below the MATI value with a predefined
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probability smaller than 1 to maintain the stability of
control systems. Stochastic MATI constraint is formu-
lated as

Pr [µi(hi, di, pi) ≤ Ω] ≥ δ (1)

where µi is the time interval between subsequent state
vector reports of node i as a function of hi, pi and
di; Ω is the MATI; and δ is the minimum probability
with which MATI should be achieved. The values of
Ω and δ are determined by the control system. The
number of reception opportunities of the state vector
reports is equal to

⌊
Ω
hi

⌋
within each Ω. Based on the

assumption above on the modeling of packet error as a
Bernoulli random process with probability pi, Eq. (1)
can be rewritten as

1− p
⌊

Ω
hi

⌋
i ≥ δ (2)

In [14], stochastic MATI constraint is used in the op-
timization framework to represent the stability require-
ment of the control systems.

8) In addition to the stochastic MATI constraint, MAD
constraint is essential to maintain the performance and
the stability of the control systems on a certain level
[21]. It is expressed as

di ≤ ∆ (3)

where ∆ is the MAD value to stabilize the control
system. Typical ∆ values are on the order of of a few
tens of milliseconds for fast control applications [5],
[22].

9) The average power consumption of a sensor node i
is formulated as a function of the sampling period,
transmission delay and packet error probability as

Wi (hi, di(bi), pi) =

(
W t

i (bi, pi) +W c
i

)
di(bi)

hi
(4)

where bi is the number of bits used per symbol or
the constellation size given a predetermined modulation
scheme and di is represented as a function of bi for that
particular modulation scheme, W t

i is the transmission
power calculated as a function of the parameters bi and
pi for a given modulation and channel coding, and W c

i

is the circuit power consumption in the active mode
at the transmitter. In the following, we will use the
notation of Wi (hi, bi, pi) instead of Wi (hi, di(bi), pi)
for convenience since the optimization variables will be
the sampling period hi, the constellation size bi, and the
packet error probability pi.

10) We assume that, due to its limited weight and size, trans-
mit power of a sensor node cannot exceed a maximum
power level W t,max. The maximum transmit power
constraint is formulated as

W t
i (bi, pi) ≤W t,max (5)

11) Schedulability constraint represents the allocation of the
transmission times of the sensor nodes in the network.
It is required to guarantee a feasible schedule for the

determined set of constellation size and sampling period
values for each node in the network given a MAD value
and expressed as

{di(bi), hi,∆} ∈ Sfeasible (6)

where Sfeasible denotes the set of {di(bi), hi,∆} val-
ues such that a feasible schedule can be constructed.
Depending on the specific scheduling algorithm chosen,
Sfeasible may change meaning that a set {di(bi), hi,∆}
can yied a feasible schedule using a particular schedul-
ing algorithm while not yielding a feasible schedule
using another scheduling algorithm. In [14], a schedu-
lability constraint is proposed for pre-emptive Earliest
Deadline First (EDF) scheduling algorithm to be used
in the optimization problem. In this paper, we do not
consider any particular scheduling algortihm and pro-
pose an optimal solution method in which any particular
scheduling algorithm can be used including EDF, Least
Laxity First, Rate Monotonic scheduling algorithms [23]
and the numerous ones proposed in the literature.

12) We do not consider any particular modulation scheme.
For this purpose, instead of formulating the average
power consumption and transmit power of a node for a
particular modulation scheme as we have done in [14],
we propose a generic model in which many modulation
schemes reside. We assume that the average power con-
sumption Wi (hi, bi, pi) and transmit power W t

i (bi, pi)
satisfy the following properties:

a) Wi (hi, bi, pi) is a monotonically decreasing func-
tion of hi.

b) W t
i (bi, pi) is a monotonically decreasing function

of pi.

Property (a) follows from Eq. (4) and holds for any
modulation scheme. Property (b) implies that a lower
power consumption can be achieved at the expense
of a higher packet error probability keeping the other
parameters fixed.
It can be verified that these properties are satisfied in
many modulation schemes including the most common
ones QAM (Quadrature Amplitude Modulation) and
FSK (Frequency Shift Keying) [16].

13) Our goal is to control the power consumption of the
sensor nodes which will enable affordable WNCS de-
ployments by either eliminating battery replacements or
prolonging the lifetime of the batteries. To achieve this
goal, in the optimization problem formulation, we use a
generalized power cost function f({Wi(hi, bi, pi)|i ∈
[1, N ]}) to be minimized. The power cost function
f({Wi(hi, bi, pi)|i ∈ [1, N ]}) satisfies the following
property:
• f({Wi(hi, bi, pi)|i ∈ [1, N ]}) is a monotonically

increasing function of Wi(hi, bi, pi) for each and
every node i.

This generalized power cost function model holds for
many commonly used objective functions including the
total power consumption of the network [24], the maxi-
mum power consumption among the sensor nodes in the
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network [25] and the log sum of power consumptions
of the sensor nodes in the network.

III. OPTIMIZATION PROBLEM

This section investigates the problem of the joint optimiza-
tion of control and communication systems. The objective is
minimization of a generalized power cost function subject to
the stochastic MATI and MAD constraints guaranteeing the
stability of the control system and maximum transmit power
and schedulability constraints of the wireless communication
system.

The optimization problem is formulated as

min
hi,bi,pi,i∈[1,N ]

f({Wi(hi, bi, pi)|i ∈ [1, N ]}) (7a)

s.t.
⌊

Ω

hi

⌋
ln pi − ln (1− δ) ≤ 0, ∀i ∈ [1, N ] ,

(7b)
0 < di(bi) ≤ min {∆, hi}, ∀i ∈ [1, N ], (7c)
0 < hi ≤ Ω, ∀i ∈ [1, N ], (7d)
0 < pi < 1, ∀i ∈ [1, N ], (7e)

W t
i (bi, pi) ≤W t,max, ∀i ∈ [1, N ], (7f)

{di(bi), hi,∆} ∈ Sfeasible, (7g)

where N is the number of nodes in the network. Eqs. (7b)
and (7c) represent the stochastic MATI and MAD constraints
respectively. Eq. (7d) states that the sampling period of the
nodes must be less than or equal to the MATI. Eq. (7e) states
the lower and upper bounds for the packet error probability.
Eq. (7f) represents the maximum transmit power constraint.
Finally, Eq. (7g) represents the schedulability constraint. The
variables of the problem are hi, i ∈ [1, N ], the sampling period
of the nodes; bi, i ∈ [1, N ], the constellation size of the nodes;
and pi, i ∈ [1, N ], the packet error probability of the nodes.

This optimization problem is a Mixed-Integer Programming
problem thus difficult to solve for the global optimum [26].
In the following, we analyze the optimality conditions for the
optimization problem and propose an optimal algorithm.

A. Optimality Analysis

Lemma 1: In the optimal solution, the sampling period h∗i
and packet error probability p∗i of the nodes are given by

Ω

h∗i
=

ln(1− δ)
ln p∗i

= ki (8)

such that the stochastic MATI constraint is satisfied with
equality where ki is a positive integer and equal to the number
of transmissions within each Ω.

Proof: We have proven this result for MQAM modulation
scheme [14] in which the objective function is the sum
of power consumptions of the networks due to the fact
that the objective function and transmit power function are
monotonically decreasing functions of hi and pi. Hence, the
result also holds for the optimization problem (7). �

Since hi and pi can be represented as functions of a single
variable ki optimally using the expression derived in Lemma

1, we eliminate them from the optimization problem (7) which
is then reformulated as

min
bi,ki,i∈[1,N ]

f({Wi(bi, ki)|i ∈ [1, N ]}) (9a)

s.t. 0 < di(bi) ≤ min

{
∆,

Ω

ki

}
, ∀i ∈ [1, N ], (9b)

W t
i (bi, ki) ≤W t,max, ∀i ∈ [1, N ], (9c)

{di(bi), ki,∆} ∈ Sfeasible, (9d)

where the constraints given in Eqs. (7c), (7f) and (7g)
correspond to those in Eqs. (7c), (7f) and (7g) respectively and
the remaining constraints in the optimization problem (7) are
removed due to the additional constraint of ki being a positive
integer. The following lemma expresses the optimal value of
ki in terms of bi so that the above optimization problem can
be formulated with the variable bi only.

Lemma 2: Suppose that there exists a feasible solution
for the optimization problem (9). Then, the optimal value of
ki denoted by k∗i is the minimum positive integer satisfying
Eq. (9c) and can be expressed as a function of bi.

Proof: Since f(Wi(hi, bi, pi)) is a monotonically decreasing
function of hi and pi, it is a monotonically increasing function
of ki due to Lemma 1. Moreover, minimizing ki does not
shrink the regions for bi defined by the constraints (9b)
and (9d). Hence k∗i is the minimum positive integer
satisfying Eq. (9c) and can therefore be represented as a
function of bi given the transmit power function W t

i (bi, ki). �

Next, we can determine the minimum and maximum bi
values for each sensor node i, denoted by bmin

i and bmax
i

respectively, evaluating the constraints given in Eqs. (9b), (9c).
Then, using the finding proposed in Lemma 2, the optimization
problem can be further simplified as

min
bi,i∈[1,N ]

f({Wi(bi, k
∗
i )|i ∈ [1, N ]}) (10a)

s.t. bmin
i ≤ bi ≤ bmax

i , ∀i ∈ [1, N ], (10b)

{di(bi),∆} ∈ Sfeasible, (10c)

Note that the joint optimization problem given by Eqs. (7)
with variables bi, hi and pi has been reduced to a single-
variable optimization problem using the optimality relations
among the variables. However, since the constellation size bi is
integer, the optimization problem is an IP which is combinato-
rial in nature. In the following, we propose a fast enumeration
algorithm which can solve the problem in reasonable runtime
in practice.

B. Optimal Fast Enumeration Algorithm

In order to solve the optimization problem given by Eqs.
(10), we propose the Optimal Fast Enumeration Algorithm
(OFE), given by Algorithm 1, which is described as follows.
First, for each sensor node i ∈ [1, N ], we determine Wi(bi, k

∗
i )

for each bi ∈ [bmin
i , bmax

i ]. Let Wij denote the power consump-
tion of node i for constellation size bi = j. We first sort Wij

for each node i in increasing order. To use a simpler notation,
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let Wi1 be minimum Wij , Wi2 be the second minimum
Wij and so forth. Similarly, let bi1 be the constellation size
corresponding to minimum power consumption Wi1, bi2 be the
constellation size corresponding to second minimum power
consumption Wi2 and so forth. Let Kbi be the number of
feasible bi values for each node i; i.e., Kbi = bmax

i −bmin
i +1.

Algorithm 1 Optimum Fast Enumeration Algorithm
Input: bij , ∀i ∈ [1, N ], ∀j ∈ [1,Kbi ];
Output: p∗;

1: f∗ = f(b1Kb1
, b2Kb2

, ..., bNKbN
);

2: p = (b11, b21, ..., bN1);
3: deg(p) = N ;
4: P = {p};
5: while P 6= ∅ do
6: P+ = ∅;
7: for each p ∈ P do
8: if f(p) ≤ f∗ then
9: if isSchedulable(p) then

10: p∗ = p;
11: f∗ = f(p);
12: else
13: for j = 1 : deg(p) do
14: p+ = p;
15: p+(N − j + 1) = p(N − j + 1)++;
16: deg(p+) = j;
17: end for
18: P+ = P+ + {p+};
19: end if
20: end if
21: end for
22: P = P+;
23: end while

Algorithm starts with the root constellation size vector
(b11, b21, ..., bN1) corresponding to minimum power consump-
tion for each node in the network (Line 2). Note that each
vector p corresponds to a constellation size vector such that
ith element of the vector is the constellation size of the node i.
For each vector p, degree of p, denoted by deg(p), is defined
to be the number of vectors that vector p is branched into.
Degree of root vector (b11, b21, ..., bN1) is set to N (Line
3). Algorithm keeps track of the best solution f∗ and f∗ is
initially set to the objective corresponding to the root vector
(b11, b21, ..., bN1) (Line 1). Vector set P is defined to be the
set of constellation size vectors to be evaluated in the next
iteration of the algorithm and initially contains the vector
(b11, b21, ..., bN1) (Line 4). For each vector p in P (Line 7),
the algorithm first determines whether it can improve the best
solution so far (Line 8). If the objective corresponding to the
vector p is less than or equal to the best solution so far,
the algorithm checks the schedulability of vector p. If p is
schedulable (Line 9), best constellation size vector p∗ is set to
p (Line 10) and best solution is updated to the objective value
corresponding to p (Line 11). Note that schedulable vectors
are not branched into new vectors since the objective value of
the new vectors branched from a schedulable vector will not
be smaller than the objective value of that schedulable node.
Otherwise, if p is not schedulable (Line 12), the algorithm
branches the vector p into deg(p) vectors as follows (Line
14-16). For each j = 1 : deg(p), a vector p+ is generated by

setting the constellation size of node N − j + 1 in vector p
to the next constellation size value and degree of p+ is set to
j. Note that newly generated vectors have different degrees.
This mechanism guarantees that the algorithm generates a
particular vector p only once and unless there is a schedulable
vector, the algorithm generates all possible vectors. Each new
vector p+ is added to set P+ which is the set of vectors
to be evaluated in the next iteration of the algorithm (Line
18). After evaluation of each vector p in P, P is equalized to
set P+ (Line 22). Algorithm terminates when there exists no
inschedulable vector in P (Line 5). Since the algorithm can
enumerate all possible constellation size vectors and check
their schedulability in the worst case, the complexity of OFE
is O(

∏
i∈[1,N ]KbiF ) where F is the complexity required to

determine whether a particular constellation size vector yields
a feasible schedule using a particular scheduling algorithm. For
example, the complexity of schedulability analysis for EDF
scheduling algorithm is

F = N

N∑
i=1

min{ c
1−c maxi∈[1,N ]{hi −∆},Ω}

hi
(11)

where c =
∑N

i=1
di

hi
. The details of the schedulability and

complexity analysis of EDF scheduling algorithm can be found
in [14].

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed optimal solution algorithm, denoted by “OFE”, over the
traditional separate design of controller and communication
systems denoted by “TS”. In “TS”, the constellation size
and sampling period values are predetermined such that the
existence of a feasible solution is guaranteed for the worst
case scenario without any adjustment to different scenarios.
For example, in performance analysis for varying values of
MAD values, we select one constellation size value that yields
a feasible schedule for all MAD values. Due to space limits,
we limit the simulations for the objective of minimizing
total power consumption in the network and for the MQAM
modulation scheme. EDF scheduling algorithm is used for
schedule construction and schedulability analysis.

Simulation results are obtained based on 1000 independent
random network topologies where the sensor nodes in the
WNCS are uniformly distributed within a circular area of
radius r transmitting to a controller located in the center of
the area.

σ2 −174 dBm/Hz B 10 KHz
W t,max 250 mW W c 50mW

Li, i ∈ [1, N ] 100 bits δ 0.95
Nf 10 dB Gc 1 (uncoded) [16]

TABLE I: Simulation Parameters

The attenuations of the links are determined considering
both small scale statistics that arise mainly from multipath
propagation and variations in the communication environment
and large scale statistics that arise primarily from the free
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Fig. 3: Average power consumption in a network of 20 nodes at
different average distances from the controller where ∆ = 5 ms and
Ω = 100 ms.

space loss and the environment affecting the degree of refrac-
tion, diffraction, reflection and absorption. The attenuation of
the links considering the large scale statistics is modeled as

PL(d) = PL(d0) + 10α log(d/d0) + Z (12)

where d is the distance between the sensor node and the
controller, PL(d) is the path loss at distance d in decibels,
PL(d0) is the path loss at reference distance d0 = 1 m, α
is the path loss exponent [16] and Z is a Gaussian random
variable with zero mean and standard deviation σz [27]. The
path loss model is then extended by the small scale fading
that has been modeled by using Rayleigh fading with scale
parameter Ω set to the mean power level determined by using
Eqn. (12) [27], [28]. The parameters used in the simulations
are given in Table-I.

Fig. 3 depicts the average power consumption in a network
of 20 nodes at varying average distances from the controller.
As distance increases, the transmit power required to compen-
sate for the increasing attenuation increases. The constellation
size for the TS algorithm is determined such that there
exists a feasible schedule for all distance values. Hence, it is
determined considering the maximum distance since feasibility
for maximum distance guarantees feasibility for lower distance
values. Therefore, the OFE algorithm outperforms the TS
algorithm significantly for relatively small average distance
values.

Fig. 4 illustrates the average power consumption in a
network of 20 nodes for varying MAD values. The MAD con-
straint determines either the minimum or maximum constella-
tion size depending on the specific modulation scheme used.
For MQAM modulation scheme, it specifies the minimum
constellation size. As the MAD increases up to a certain value,
around 2 ms, the average power consumption decreases since
for smaller MAD values, the nodes in the network are forced
to choose greater constellation size values, which increases the
power consumption dramatically. After that value, increasing
MAD value has no effect on the average power consumption
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Fig. 4: Average power consumption in a network of 20 nodes for
different MAD values where nodes are uniformly distributed within
a circular area of radius 10 m and Ω = 200 ms.

due to the fact that the optimal constellation size remains
constant although the feasible region expands. Since existence
of a feasible solution for minimum MAD value ensures the
feasibility of all MAD values, the constellation size for the
TS algorithm is determined considering the minimum MAD
value. Since the power consumption of a sensor node does not
depend on the MAD value, the average power consumption
obtained by the TS algorithm remains constant for different
MAD values and is dramatically worse than the OFE.

Fig. 5 shows the average power consumption in a network
of 20 nodes for different MATI values. The average power
consumption decreases as the MATI increases since the power
consumption is a decreasing function of MATI. Moreover,
as the MATI decreases, the feasible region defined by the
schedulability constraint shrinks resulting a higher increase in
average power consumption than the functional dependency
of power consumption on MATI suggests. Again, the OFE
algorithm outperforms the TS algorithm significantly for all
MATI values in the specified range. The performance of the
TS algorithm is relatively closer to the performance of the OFE
algorithm for smaller MATI values since the constellation size
is determined considering the minimum MATI value; however,
still much worse than the OFE algorithm.

V. CONCLUSION

A joint optimization framework for the design of commu-
nication and control systems in WNCSs is investigated. We
have extended our work on joint design of communication
and control system in which a joint optimization problem
is formulated with the objective of minimizing the power
consumption of the network for MQAM modulation scheme.
We have generalized the objective of the optimization problem
by using a generalized power cost function representing many
widely-used power-related objectives including total power
consumption of the network, maximum power consumption
among the nodes in the network and log sum of the power
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Fig. 5: Average power consumption in a network of 20 nodes for
different MATI values where nodes are uniformly distributed within
a circular area of radius 10 m and ∆ = 10 ms.

consumptions of the nodes in the network. Moreover, we have
extended the optimization formulation to be applicable for any
modulation scheme that satisfies certain properties including
MQAM and MFSK modulation schemes. The optimization
problem is formulated as a Mixed-Integer Programming prob-
lem which is very difficult to solve for the global optimum.
By analyzing the relations among the optimization variables
and the sensitivity effects of the optimization variables on
the objective of the problem, the optimality conditions are
determined allowing us to reformulate the problem as a
pure Integer Programming problem. To solve the simplified
problem, we propose an optimal fast enumeration algorithm.
Simulations show that the proposed optimal solution method
performs much better than the algorithm based on separate
design of control and communication systems for varying
network and control system parameters including distance,
MAD and MATI values.
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